
Day 1: Introduction
Abhinav Bhatele, Department of Computer Science

HPC Programming Bootcamp

Abhinav Bhatele, HPC Programming Bootcamp

Bootcamp information

• Location: Iribe 4105 from 9:30-11:45 am, 1:15-4:00 pm

• Labs will be in the afternoon

• Website: https://hpcbootcamp.readthedocs.io

• Lecture slides and lab info posted online before class

2

https://hpcbootcamp.readthedocs.io

Abhinav Bhatele, HPC Programming Bootcamp

Overview

• Day 1: Introduction to serial and parallel programming

• Computer architecture

• Measuring performance and optimizing serial code

• Parallel hardware

• Day 2: Writing OpenMP programs

• Overview of parallel programming

• Writing OpenMP programs

• Profiling parallel applications

3

Abhinav Bhatele, HPC Programming Bootcamp

Overview

• Day 3: Writing MPI programs

• Writing MPI programs

• Parallel performance

• Optimizing parallel performance

• Day 4: Other programming models

• Charm++

• RAJA

4

Introduction

Abhinav Bhatele, HPC Programming Bootcamp

von Neumann architecture

6

https://en.wikipedia.org/wiki/Von_Neumann_architecture

Abhinav Bhatele, HPC Programming Bootcamp

Memory hierarchy

• All levels of memory
hierarchy are getting
faster

7

https://www.cs.swarthmore.edu/~kwebb/cs31/f18/memhierarchy/mem_hierarchy.html

Abhinav Bhatele, HPC Programming Bootcamp

Memory access: UMA vs. NUMA

8

Uniform Memory Access Non-uniform Memory Access
https://frankdenneman.nl/2016/07/07/numa-deep-dive-part-1-uma-numa/

Abhinav Bhatele, HPC Programming Bootcamp

Memory access: UMA vs. NUMA

8

Uniform Memory Access Non-uniform Memory Access
https://frankdenneman.nl/2016/07/07/numa-deep-dive-part-1-uma-numa/

Abhinav Bhatele, HPC Programming Bootcamp

Definitions: Cores, sockets, nodes

• CPU: processor

• Single or multi-core: core is a processing unit,
multiple such units on a single chip make it a multi-
core processor

• Socket: chip

• Node: packaging of sockets

9

https://www.glennklockwood.com/hpc-howtos/process-affinity.html

Abhinav Bhatele, HPC Programming Bootcamp

A multi-socket node

10

AMD Bulldozer: https://en.wikipedia.org/wiki/Memory_hierarchy

Abhinav Bhatele, HPC Programming Bootcamp

Definitions: Serial vs. parallel code

• Thread: a thread or path of execution managed by the OS

• Process: heavy-weight, processes do not share resources such as memory, file
descriptors etc.

• Serial or sequential code: can only run on a single thread or process

• Parallel code: can be run on one or more threads or processes

11

Measuring performance

Abhinav Bhatele, HPC Programming Bootcamp

Measuring performance (execution time)

• Use the time system call

• Add timers to your code

• Use a performance tool: gprof

13

Abhinav Bhatele, HPC Programming Bootcamp

Definitions: Wall clock vs CPU time

• Elapsed or wall clock time is the total time from start to finish

• CPU or process time is the time spent in a process

• Doesn’t include time when the process was stopped by others such as for I/O

• Includes time when the system is running user code and system code

14

Abhinav Bhatele, HPC Programming Bootcamp

Using the time command

• Prefix time on the command line before your executable

• Real: Elapsed time

• User: Time spent in the user code

• Sys: Time spent in the kernel

15

$ time ./program <args>

real 0m0.809s
user 0m0.734s
sys 0m0.019s

Abhinav Bhatele, HPC Programming Bootcamp

int gettimeofday(struct timeval *tv, struct
timezone *tz);

16

#include <sys/time.h>

...
struct timeval start, end;

gettimeofday(&start, NULL);
/* do work */
gettimeofday(&end, NULL);

long long elapsed = (end.tv_sec - start.tv_sec) * 1000000000ll
 + (end.tv_usec - start.tv_usec) * 1000ll;

Abhinav Bhatele, HPC Programming Bootcamp

int getrusage(int who, struct rusage *usage);

17

#include <stdio.h>
#include <sys/time.h>
#include <sys/resource.h>

...
struct rusage start, end;

getrusage(RUSAGE_SELF, &start);
/* do work */
getrusage(RUSAGE_SELF, &end);

long long elapsed = (end.ru_utime.tv_sec - start.ru_utime.tv_sec)
* 1000000000ll
 + (end.ru_utime.tv_usec - start.ru_utime.tv_usec)
* 1000ll;

Abhinav Bhatele, HPC Programming Bootcamp

int getrusage(int who, struct rusage *usage);

17

#include <stdio.h>
#include <sys/time.h>
#include <sys/resource.h>

...
struct rusage start, end;

getrusage(RUSAGE_SELF, &start);
/* do work */
getrusage(RUSAGE_SELF, &end);

long long elapsed = (end.ru_utime.tv_sec - start.ru_utime.tv_sec)
* 1000000000ll
 + (end.ru_utime.tv_usec - start.ru_utime.tv_usec)
* 1000ll;

who:

RUSAGE_SELF
RUSAGE_CHILDREN
RUSAGE_THREAD

Abhinav Bhatele, HPC Programming Bootcamp

Tools to measure performance: gprof

• Compile program with -pg

• Run the program

• Outputs gmon.out

• Run gprof on the output

18

$ gcc -pg -O3 -o pgm pgm.c

$./pgm

$ gprof pgm gmon.out

Abhinav Bhatele, HPC Programming Bootcamp

Sample gprof output

19

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls Ts/call Ts/call name
 60.03 0.03 0.03 element_matrices
 40.02 0.05 0.02 smvp
 0.00 0.05 0.00 35025 0.00 0.00 inv_J
 0.00 0.05 0.00 1303 0.00 0.00 area_triangle
 0.00 0.05 0.00 1 0.00 0.00 arch_parsecl

Abhinav Bhatele, HPC Programming Bootcamp

Things to consider

• Performance variation from run-to-run

• Better to take multiple measurements and then take the mean

• Input arguments

• Are they representative of a production run

20

Optimizing code

Abhinav Bhatele, HPC Programming Bootcamp

Optimizations done by hardware

• Instruction pipelining

• Execute different parts of instructions in parallel

• Branch prediction

• Speculatively execute the most likely branch

22

Abhinav Bhatele, HPC Programming Bootcamp

Optimizations done by the compiler

• Important to remember the compiler option -ON, N = 1, 2, 3

• Should only enable safe optimizations that do not change the result of a correct program

• May discover latent bugs

• Compiler optimizations:

• https://en.wikipedia.org/wiki/Category:Compiler_optimizations

• Loop-invariant code motion

• Loop unrolling

• Dead code elimination

23

https://en.wikipedia.org/wiki/Category:Compiler_optimizations

Abhinav Bhatele, HPC Programming Bootcamp

Typical performance problems

• Slow algorithm — needs a significant re-write

• Forget to turn on compiler optimization

• Debugging printfs in the code

• Inefficient input/output (I/O)

• Cache/memory performance

24

Abhinav Bhatele, HPC Programming Bootcamp

Good software practices

• Function inlining

• Efficient data layout and access

• Remove unnecessary data movement

25

Abhinav Bhatele, HPC Programming Bootcamp

Principle of locality

• Temporal locality: Data that was referenced recently is likely to ne referenced again

• Spatial locality: Data nearby tends to be referenced together

26

for (i=0; i<M; i++)
for (j=0; j<N; j++)
for (k=0; k<L; k++)
C[i][j] += A[i][k]*B[k][j];

https://en.wikipedia.org/wiki/Matrix_multiplication

Abhinav Bhatele, HPC Programming Bootcamp

Blocking to improve cache performance

• Create smaller blocks that fit in cache

• C22 = A21 * B12 + A22 * B22 + A23 * B32 + A24 * B42

27

Parallel Architecture

Abhinav Bhatele, HPC Programming Bootcamp

Parallel Architecture

• A set of nodes or processing elements connected by a network.

29

https://computing.llnl.gov/tutorials/parallel_comp

Abhinav Bhatele, HPC Programming Bootcamp

Interconnection networks

• Different topologies for connecting nodes together

• Used in the past: torus, hypercube

• More popular currently: fat-tree, dragonfly

30

Column all-to-all (black) links Row all-to-all (green) links

A group with 96 Aries routers

Inter-group (blue) links
(not all links are shown)

Two-level dragonfly with multiple groups

Fig. 3: Example of a Cray Cascade (XC30) installation with four groups and 96 Aries routers per group. Within a group, a
message is routed in at most two hops (on the black and/or green links) if congestion does not exist; between groups, the
inter-group blue links are used leading to a shortest path of at most five hops.

thousand nodes. In either case, the top-level switches only have
downward connections from their ports to other switches (thus
if there are n leaf-level switches, only n

2 top-level switches are
needed).

Traffic in current fat-tree networks is usually forwarded
using a static routing algorithm, meaning that all messages
between a given pair of nodes take the same (shortest)
path through the fat-tree every time. Each path consists of
a sequence of links going up from the source node to a
nearest common ancestor, followed by a sequence of links
going down to the destination node. A commonly-used static
routing algorithm is the “destination mod k” or D-mod-k
algorithm [4], which load balances routes across links on a
fat-tree and is believed to have good performance. In this
scheme, the next upward link in the path is chosen at each
level based on the destination node’s ID, until the common
ancestor is reached. After that, downward links that lead to
the destination are selected.

B. Dragonfly Topology and Adaptive Routing

The dragonfly topology is becoming another popular choice
for interconnection networks in post-petascale supercomput-
ers [5]. In this paper, we focus on Cray Cascade [6] (or Cray
XC30), one of the implementations of the dragonfly topology.
Figure 3 illustrates a four-group Cray Cascade installation.
Ninety-six routers are connected together to form a group,
arranged in a 6 ⇥ 16 grid. Sixteen routers in each row
are connected in an all-to-all manner by green links, and
six routers in each column are also connected in an all-to-
all configuration by sets of three black links per router-pair.
Routers in different groups are connected together via blue
links.

In contrast to fat-trees, the Cray Cascade uses adaptive
routing to minimize hotspots [6]. In adaptive routing schemes,
each router can dynamically choose between multiple paths for
any given message. Some paths are minimal in the number
of hops and others go indirectly through a randomly selected
third group. Based on the amount of load on the minimal paths,
the router may randomly select one of the other non-minimal
paths along which to send messages. This random scheme is
expected to help mitigate real-time congestion.

C. Inter-Job Network Interference

As mentioned in Section I, jobs in HPC systems typically
execute concurrently and contend for shared resources. In this
work, we focus on network congestion that arises when jobs
compete for the shared system interconnect, degrading com-
munication performance. In certain architectures, for example
the IBM Blue Gene machines, jobs are always placed so that
they have an isolated partition of the network [9]. However,
such placements might lead to system fragmentation and hence
lowered system utilization, and most modern machines are
configured to let jobs share the interconnect.

The effects of network contention may manifest differently
on each machine based on its link bandwidth and topology. In
this work we study the effects of network contention on fat-
tree and dragonfly machines. While the fat-tree topology has
good properties in terms of total available bandwidth across
the system, congestion can still be a problem [10]. Under the
D-mod-k routing scheme, the next upgoing link in a message’s
path is selected based on a modulo of its destination ID.
Therefore, inter-switch traffic belonging to different jobs may
contend at a switch if their destination IDs have the same
modulo. In a typical fat-tree installation, multiple many-node
jobs are likely to contend for network links and interfere with
each other’s communication performance.

As mentioned above, dragonfly machines typically use
adaptive routing to attempt to load balance traffic, but inter-job
network contention can occur regardless. For example, con-
tention can occur for the global links if multiple applications
are using non-local communication patterns. Worse, multiple
applications can be assigned to the same routers within a
group, and even if both have localized (e.g., nearest-neighbor)
patterns, they can conflict on row and column links. Outside
traffic that is routed indirectly through a given group can also
conflict with jobs scheduled to that group on the local links.
If the amount of traffic is high enough, congestion will occur
in any or all of these locations even with adaptive routing.

III. EXPERIMENTAL SETUP

Below, we describe the machines, benchmarks, and produc-
tion applications used in the experiments for this paper.

Column all-to-all (black) links Row all-to-all (green) links

A group with 96 Aries routers

Inter-group (blue) links
(not all links are shown)

Two-level dragonfly with multiple groups

Fig. 3: Example of a Cray Cascade (XC30) installation with four groups and 96 Aries routers per group. Within a group, a
message is routed in at most two hops (on the black and/or green links) if congestion does not exist; between groups, the
inter-group blue links are used leading to a shortest path of at most five hops.

thousand nodes. In either case, the top-level switches only have
downward connections from their ports to other switches (thus
if there are n leaf-level switches, only n

2 top-level switches are
needed).

Traffic in current fat-tree networks is usually forwarded
using a static routing algorithm, meaning that all messages
between a given pair of nodes take the same (shortest)
path through the fat-tree every time. Each path consists of
a sequence of links going up from the source node to a
nearest common ancestor, followed by a sequence of links
going down to the destination node. A commonly-used static
routing algorithm is the “destination mod k” or D-mod-k
algorithm [4], which load balances routes across links on a
fat-tree and is believed to have good performance. In this
scheme, the next upward link in the path is chosen at each
level based on the destination node’s ID, until the common
ancestor is reached. After that, downward links that lead to
the destination are selected.

B. Dragonfly Topology and Adaptive Routing

The dragonfly topology is becoming another popular choice
for interconnection networks in post-petascale supercomput-
ers [5]. In this paper, we focus on Cray Cascade [6] (or Cray
XC30), one of the implementations of the dragonfly topology.
Figure 3 illustrates a four-group Cray Cascade installation.
Ninety-six routers are connected together to form a group,
arranged in a 6 ⇥ 16 grid. Sixteen routers in each row
are connected in an all-to-all manner by green links, and
six routers in each column are also connected in an all-to-
all configuration by sets of three black links per router-pair.
Routers in different groups are connected together via blue
links.

In contrast to fat-trees, the Cray Cascade uses adaptive
routing to minimize hotspots [6]. In adaptive routing schemes,
each router can dynamically choose between multiple paths for
any given message. Some paths are minimal in the number
of hops and others go indirectly through a randomly selected
third group. Based on the amount of load on the minimal paths,
the router may randomly select one of the other non-minimal
paths along which to send messages. This random scheme is
expected to help mitigate real-time congestion.

C. Inter-Job Network Interference

As mentioned in Section I, jobs in HPC systems typically
execute concurrently and contend for shared resources. In this
work, we focus on network congestion that arises when jobs
compete for the shared system interconnect, degrading com-
munication performance. In certain architectures, for example
the IBM Blue Gene machines, jobs are always placed so that
they have an isolated partition of the network [9]. However,
such placements might lead to system fragmentation and hence
lowered system utilization, and most modern machines are
configured to let jobs share the interconnect.

The effects of network contention may manifest differently
on each machine based on its link bandwidth and topology. In
this work we study the effects of network contention on fat-
tree and dragonfly machines. While the fat-tree topology has
good properties in terms of total available bandwidth across
the system, congestion can still be a problem [10]. Under the
D-mod-k routing scheme, the next upgoing link in a message’s
path is selected based on a modulo of its destination ID.
Therefore, inter-switch traffic belonging to different jobs may
contend at a switch if their destination IDs have the same
modulo. In a typical fat-tree installation, multiple many-node
jobs are likely to contend for network links and interfere with
each other’s communication performance.

As mentioned above, dragonfly machines typically use
adaptive routing to attempt to load balance traffic, but inter-job
network contention can occur regardless. For example, con-
tention can occur for the global links if multiple applications
are using non-local communication patterns. Worse, multiple
applications can be assigned to the same routers within a
group, and even if both have localized (e.g., nearest-neighbor)
patterns, they can conflict on row and column links. Outside
traffic that is routed indirectly through a given group can also
conflict with jobs scheduled to that group on the local links.
If the amount of traffic is high enough, congestion will occur
in any or all of these locations even with adaptive routing.

III. EXPERIMENTAL SETUP

Below, we describe the machines, benchmarks, and produc-
tion applications used in the experiments for this paper.

Torus Fat-tree Dragonfly

Abhinav Bhatele, HPC Programming Bootcamp

Memory and I/O sub-systems

• Similar issues for both memory and disks (storage):

• Where is it located?

• View to the programmer vs. reality

• Performance considerations: latency vs. throughput

31

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

Questions?

