
Day 1:
Abhinav Bhatele, Department of Computer Science

HPC Programming Bootcamp

Abhinav Bhatele, HPC Programming Bootcamp

The need for high performance computing

2

https://www.nature.com/articles/nature21414

Drug discovery

Abhinav Bhatele, HPC Programming Bootcamp

The need for high performance computing

2

https://www.nature.com/articles/nature21414

Drug discovery

Weather forecasting

https://www.ncl.ucar.edu/Applications/wrf.shtml

Abhinav Bhatele, HPC Programming Bootcamp

The need for high performance computing

2

https://www.nature.com/articles/nature21414

Drug discovery

Weather forecasting

https://www.ncl.ucar.edu/Applications/wrf.shtml

Study of the universe

https://www.nas.nasa.gov/SC14/demos/demo27.html

Abhinav Bhatele, HPC Programming Bootcamp

Why do we need parallelism

• Make some science simulations feasible in the lifetime of humans

• Either due to speed or memory requirements

• Provide answers in realtime or near realtime

3

Terms and Definitions

Abhinav Bhatele, HPC Programming Bootcamp

What is parallel computing?

• Does it include:

• Grid computing

• Distributed computing

• Cloud computing

• Does it include:

• Superscalar processors

• Vector processors

• Accelerators (GPUs, FPGAs)

5

Abhinav Bhatele, HPC Programming Bootcamp

Job (batch) scheduling

6

Abhinav Bhatele, HPC Programming Bootcamp

Job (batch) scheduling
• HPC systems use job or batch scheduling

• Each user submits their parallel programs for execution to a “job” scheduler

6

Job Queue

#Nodes
Requested

Time
Requested

128 30 mins
64 24 hours
56 6 hours

192 12 hours
… …
… …

1
2
3
4
5
6

Abhinav Bhatele, HPC Programming Bootcamp

Job (batch) scheduling
• HPC systems use job or batch scheduling

• Each user submits their parallel programs for execution to a “job” scheduler

• The scheduler decides:

• what job to schedule next (based on an algorithm: FCFS, priority-based, ….)

• what resources (compute nodes) to allocate to the ready job

6

Job Queue

#Nodes
Requested

Time
Requested

128 30 mins
64 24 hours
56 6 hours

192 12 hours
… …
… …

1
2
3
4
5
6

Abhinav Bhatele, HPC Programming Bootcamp

Job (batch) scheduling
• HPC systems use job or batch scheduling

• Each user submits their parallel programs for execution to a “job” scheduler

• The scheduler decides:

• what job to schedule next (based on an algorithm: FCFS, priority-based, ….)

• what resources (compute nodes) to allocate to the ready job

6

Job Queue

#Nodes
Requested

Time
Requested

128 30 mins
64 24 hours
56 6 hours

192 12 hours
… …
… …

1
2
3
4
5
6

• Compute nodes: dedicated to each job

• Network, filesystem: shared by all jobs

Abhinav Bhatele, HPC Programming Bootcamp

Scaling and scalable

• Scaling: running a parallel program on 1 to n processes

• 1, 2, 3, … , n

• 1, 2, 4, 8, …, n

• Scalable: A program is scalable if it’s performance improves when using more
resources

7

Abhinav Bhatele, HPC Programming Bootcamp

Weak versus strong scaling

• Strong scaling: Fixed total problem size as we run on more processes

• Weak scaling: Fixed problem size per process but increasing total problem size as we
run on more processes

8

Abhinav Bhatele, HPC Programming Bootcamp

Speedup and efficiency

• Speedup: Ratio of execution time on one process to that on n processes

• Efficiency: Speedup per process

9

Speedup =
t1
tn

Efficiency =
t1

tn × n

Abhinav Bhatele, HPC Programming Bootcamp

Amdahl’s law

• Speedup is limited by the serial portion of the code

• Often referred to as serial “bottleneck”

• Lets say only a fraction p of the code can be parallelized on n processes

10

Speedup =
1

(1 − p) + p/n

Abhinav Bhatele, HPC Programming Bootcamp

Supercomputers vs. commodity clusters

• Typically, supercomputer refers to customized hardware

• IBM Blue Gene, Cray XT, Cray XC

• Cluster refers to a parallel machine put together using off-the-shelf hardware

11

Abhinav Bhatele, HPC Programming Bootcamp

Communication and synchronization

• Each physical node might compute independently for a while

• When data is needed from other (remote) nodes, messaging occurs

• Referred to as communication or synchronization or MPI messages

• Intra-node vs. inter-node communication

• Bulk synchronous programs: All processes compute simultaneously, then synchronize
together

12

Parallel Programming

Abhinav Bhatele, HPC Programming Bootcamp

Different models of parallel computation

• SIMD: Single Instruction Multiple Data

• MIMD: Multiple Instruction Multiple Data

• SPMD: Single Program Multiple Data

• Typical in HPC

14

Abhinav Bhatele, HPC Programming Bootcamp

Writing parallel programs

• Decide the algorithm first

• Data: how to distribute data among threads/processes?

• Data locality

• Computation: how to divide work among threads/processes?

15

Abhinav Bhatele, HPC Programming Bootcamp

Writing parallel programs: examples

• Molecular Dynamics

• N-body Simulations

16

Abhinav Bhatele, HPC Programming Bootcamp

Load balance and grain size

• Load balance: try to balance the amount of work (computation) assigned to different
threads/ processes

• Grain size: ratio of computation-to-communication

• Coarse-grained vs. fine-grained

17

Abhinav Bhatele, HPC Programming Bootcamp

System software: Programming models

• Shared memory/ address-space

• Explicit: Pthreads

• Implicit: OpenMP

• Distributed memory

• Explicit: MPI

• Implicit: Task-based models (Charm++)

18

User code

Parallel runtime

Communication library

Operating system

Writing OpenMP programs

Abhinav Bhatele, HPC Programming Bootcamp

Shared memory programming & OpenMP

• OpenMP is a language extension that enables parallelizing C/C++/Fortran code via
compiler directives and library routines

• Compiler converts code to multi-threaded code

• Meant for certain kinds of programs/computational kernels

• Parallelism can be specified for regions and loops

• Fork/join model of parallelism

20

Abhinav Bhatele, HPC Programming Bootcamp

OpenMP

• Support for on-node parallelization

• Directives for parallel loops, regions, functions

• Cannot be used for multi-node jobs

21

Abhinav Bhatele, HPC Programming Bootcamp

Fork-join parallelism

22

 https://en.wikipedia.org/wiki/OpenMP

https://en.wikipedia.org/wiki/OpenMP

Abhinav Bhatele, HPC Programming Bootcamp

Hello World in OpenMP

23

#include <stdio.h>
#include <omp.h>

int main(void)
{
 #pragma omp parallel
 printf("Hello, world.\n");
 return 0;
}

Compiling: gcc -fopenmp hello.c -o hello

export OMP_NUM_THREADS=2

Abhinav Bhatele, HPC Programming Bootcamp

Parallel loop in OpenMP

24

int main(int argc, char **argv)
{
 int a[100000];

 #pragma omp parallel for
 for (int i = 0; i < 100000; i++) {
 a[i] = 2 * i;
 }

 return 0;
}

Abhinav Bhatele, HPC Programming Bootcamp

Parallel region in OpenMP

25

int main(int argc, char **argv)
{
 double a[1000];
 omp_set_num_threads(4);

 #pragma omp parallel
 {
 int id = omp_thread_num();
 foo(id, a);
 }
 printf(“all done \n”);

 return 0;
}

Abhinav Bhatele, HPC Programming Bootcamp

Pragma

• Pragma: a compiler directive in C or C++

• Mechanism to communicate with the compiler

• Compiler may ignore pragmas

26

#pragma omp ...

Abhinav Bhatele, HPC Programming Bootcamp

Shared and private variables

• Shared variable: All threads have the same address for a variable

• Private variable: Each thread has a different address for a variable

• A thread cannot access the private variables of another thread

27

Abhinav Bhatele, HPC Programming Bootcamp

OpenMP functions

• void omp_set_num_threads(int num_threads)

• Set the number of OpenMP threads to be used in parallel regions

• int omp_get_num_procs(void);

• Returns the number of available processors

28

Abhinav Bhatele, HPC Programming Bootcamp

private clause

• Optional component of a pragma

• Direct compiler to make variables private

29

#pragma omp parallel for private(j)
for (i = 0; i < BLOCK_SIZE(id,p,n); i++)
 for (j = 0; j < n; j++)
 a[i][j] = MIN(a[i][j],a[i][k]+tmp);

Abhinav Bhatele, HPC Programming Bootcamp

firstprivate, lastprivate clause

• firstprivate: variable gets initial value identical to the variable controlled by the
master thread as the loop is entered

• lastprivate: value copied from the last sequentially executed iteration

30

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

Questions?

