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OpenMP: reduction
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double area, pi, x;
int i, n;
...
area = 0.0;

for (i = 0; i < n; i++) {
   x = (i+0.5)/n;
   area += 4.0/(1.0 + x*x);
}

pi = area / n;
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OpenMP: reduction

2

double area, pi, x;
int i, n;
...
area = 0.0;

for (i = 0; i < n; i++) {
   x = (i+0.5)/n;
   area += 4.0/(1.0 + x*x);
}

pi = area / n;

#pragma omp parallel for private(x)
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OpenMP: reduction

2

double area, pi, x;
int i, n;
...
area = 0.0;

for (i = 0; i < n; i++) {
   x = (i+0.5)/n;
   area += 4.0/(1.0 + x*x);
}

pi = area / n;

#pragma omp parallel for private(x) reduction(+:area)
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schedule clause

• We can use the schedule clause too specify the allocation of iterations to threads

• Static scheduling

• Dynamic scheduling

• Guided scheduling

• Auto

• Runtime: based on the OMP_SCHEDULE flag

3



Writing MPI programs



Abhinav Bhatele, HPC Programming Bootcamp

Programming models

• Shared memory model: All threads/processes have access to all of the memory

• Pthreads, OpenMP

• Distributed memory model: Each process has access to their own local memory

• Also referred to as message passing

• MPI, Charm++

• Hybrid models: Use both shared and distributed memory models together

• MPI+OpenMP, Charm++ (SMP mode)
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Distributed memory / message passing

• Each process can use its local memory for computation

• When it needs data from remote processes, it has to send messages

• PVM (Parallel Virtual Machine) was developed in 1989-1993

• MPI forum was formed in 1992 to standardize message programming models and 
MPI 1.0 was released around 1994

• v2.0 - 1997

• v3.0 - 2012
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Message passing

• Each process runs in its own address space

• Access to only their memory

• Use special routines to exchange data
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Message Passing Interface (MPI)

• It is an interface standard — defines the operations / routines needed for message 
passing

• Implemented by vendors and academics for different platforms

• Meant to be “portable”: ability to run the same code on different platforms without modifications

• Two popular implementations are MPICH and MVAPICH
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#include "mpi.h"
#include <stdio.h>

int main(int  argc, char *argv) {
  int rank, size;
  MPI_Init(&argc, &argv);

  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  MPI_Comm_size(MPI_COMM_WORLD, &size);
  printf("Hello world! I'm %d of %d\n", rank, size);

  MPI_Finalize();
  return 0;
}

Hello World in MPI
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Compiling and running an MPI program

• Compiling:

• Running:
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mpicc -o hello hello.c 

mpirun -np 2 ./hello
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Process creation / destruction

• int MPI_Init( int argc, char **argv )

• Initialize the MPI execution environment

• int MPI_Finalize( void )

• Terminates MPI execution environment
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Process identification

• int MPI_Comm_size( MPI_Comm comm, int *size)

• Determines the size of the group associated with a communicator

• int MPI_Comm_rank( MPI_Comm comm, int *rank)

• Determines the rank (ID) of the calling process in the communicator

• Communicator — a set of processes

• Default communicator: MPI_COMM_WORLD
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int MPI_Send( const void *buf, int count, MPI_Datatype datatype, 
int dest, int tag, MPI_Comm comm )

buf: address of send buffer

count: number of elements in send buffer

datatype: datatype of each send buffer element

dest: rank of destination process

tag: message tag

comm: communicator

Send a message
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int MPI_Recv( void *buf, int count, MPI_Datatype datatype, int 
source, int tag, MPI_Comm comm, MPI_Status *status )

buf: address of receive buffer

status: status object

count: maximum number of elements in receive buffer

datatype: datatype of each receive buffer element

source: rank of source process

tag: message tag

comm: communicator

Receive a message
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int main(int  argc, char *argv) {
  ...
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  MPI_Comm_size(MPI_COMM_WORLD, &size);

  int data;
  if (rank == 0) {
    data = 7;
    MPI_Send(&data, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
  } else if (rank == 1) {
    MPI_Recv(&data, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
    printf("Process 1 received data %d from process 0\n", data);
  }

  ...
}

Simple send/receive in MPI
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Collective operations
• int MPI_Barrier( MPI_Comm comm)

• Blocks until all processes in the communicator have reached this routine 

• int MPI_Bcast( void *buffer, int count, 
MPI_Datatype datatype, int root, MPI_Comm 
comm )

• Send data from root to all processes

• int MPI_Reduce( const void *sendbuf, void 
*recvbuf, int count, MPI_Datatype datatype, 
MPI_Op op, int root, MPI_Comm comm )

• Reduce data from all processes to the root
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Collective operations

• int MPI_Scatter( const void *sendbuf, int sendcount, 
MPI_Datatype sendtype, void *recvbuf, int recvcount, 
MPI_Datatype recvtype, int root, MPI_Comm comm)

• Send data from root to all processes 

• int MPI_Gather( const void *sendbuf, int sendcount, 
MPI_Datatype sendtype, void *recvbuf, int recvcount, 
MPI_Datatype recvtype, int root, MPI_Comm comm)

• Gather data from all processes to the root

• MPI_Scan
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int main(int argc, char *argv[])
{
    ...
  
    n = 10000;

    h   = 1.0 / (double) n;
    sum = 0.0;

    for (i = 1; i <= n; i += 1) {
       x = h * ((double)i - 0.5);
        sum += (4.0 / (1.0 + x * x));
    }
    pi = h * sum;

    ...
}

Calculate the value of 
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π = ∫
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int main(int argc, char *argv[])
{
    ...
  
    n = 10000;
    MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

    h   = 1.0 / (double) n;
    sum = 0.0;

    for (i = myrank + 1; i <= n; i += numranks) {
       x = h * ((double)i - 0.5);
        sum += (4.0 / (1.0 + x * x));
    }
    pi = h * sum;

    MPI_Reduce(&pi, &globalpi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

    ...
}

Calculate the value of 
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MPI communicators

• Communicator is a group or set of processes numbered 0, … , n-1

• Every program starts with MPI_COMM_WORLD

• Several MPI routines to create sub-communicators

• MPI_Comm_split

• MPI_Cart_create

• MPI_Group_incl
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Non-blocking point-to-point calls

• MPI_Isend and MPI_Irecv

• Two parts:

• post the operation

• Wait for results: need to call MPI_Wait or MPI_Test

• Can help with overlapping computation with communication
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Other MPI Calls

• MPI_Wtime

• MPI profiling interface: PMPI_*
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Performance analysis

• Parallel performance of a program might not be what we expect

• How do we find performance bottlenecks?

• Two parts to performance analysis: measurement and analysis/visualization

• Simplest tool: timers in the code and printf
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Performance Tools

• Tracing tools

• Capture entire execution trace

• Vampir, Score-P

• Profiling tools

• Typically use statistical sampling

• Gprof

• Many tools can do both

• TAU, HPCToolkit, Projections
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Metrics recorded

• Counts of function invocations

• Time spent in code

• Hardware counters
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Calling contexts, trees, and graphs

• Calling context or call path: Sequence of function 
invocations leading to the current sample

• Calling context tree: dynamic prefix tree of all call paths in 
an execution

• Call graph: keep caller-callee relationships as arcs
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the names of �elds as much as possible over di�erent sources to
enable comparison of data across measurement tools, but this is
not a requirement.

3.1.2 Nodes. Frames are associated with nodes in the Hatchet
graph, and node objects de�ne connectivity and structure of the
Hatchet model. Each node knows its children and its ancestors in
the graph, and each node has a unique key. The key is not meant to
be accessed by Hatchet users. Rather, like Frames, Hatchet nodes
expose their own comparison operations (==, >, <, etc.), which
opaquely operate on this key. This means that we can insert Node
objects directly into a pandas DataFrame column and make it an
index. By default, we use the Python id() function for the node
key. This is equivalent, roughly, to C’s & operator, in that it returns
an integer representing the address of the Python object in memory.
We require only that the node key be unique for each node. We
can optionally use keys that provide certain useful orderings (like
pre-order, post-order, etc.), if we want to pay the cost of a graph
traversal (or sort) to generate more structured keys. We default to
only guaranteeing uniqueness and not order in our keys.

3.2 GraphFrame
The central data structure in the Hatchet library is a GraphFrame,
which combines the structured indexGraphwith a pandasDataFrame.
Figure 3 shows the two objects in a GraphFrame – a graph object
(the index), and a DataFrame object storing the metrics associated
with each node.

main

physics solvers

mpi

psm2

hypre mpi

psm2

Figure 3: InHatchet, theGraphFrame consists of a graph and
a DataFrame object.

Because of the way we have architected the structured index
Graph, we can insert Node objects directly into the pandasDataFrame.
The nodes are sorted using their basic comparison operators, which
operate on their key attribute. Thus, the �rst column in theDataFrame
(the node) is the index column. As a convenience, we may also add
columns (like name) based on attributes from each node’s Frame.
For example, in the �gure, we have added the name and nid columns
from the Frame subclass for HPCToolkit. This allows us to use reg-
ular pandas operations (selection, �ltering) on these values directly.
As we will see later, the node column itself also allows various
graph-semantic functions to be used, as well. Finally, in addition to
the identifying information for each node, we also add columns for
each associated performance metric (inclusive and exclusive time
in the �gure).

Graphs vs. Trees: Hatchet stores the structure (typically a pre�x
tree generated from call paths) in the input data as a directed graph
(instead of a tree) for two reasons. First, subsequent operations on a
tree can create edges or merge nodes, turning the tree into a graph.
Additionally, output from tools such as callgrind is already in the
form of a DAG. Hatchet’s directed graph could be connected or
have multiple disconnected components. Each entity in the graph,
such as a callsite, procedure frame, or function, is stored as a node
and the caller-callee relationships are stored as directed edges. Each
node in the graph can have one or multiple parents and children.

Bene�ts of DataFrames: We use a pandas DataFrame to store
all the numerical and categorical data associated with each node.
Pro�le data can be inherently high-dimensional when metrics are
gathered per-MPI process and/or per-thread. In such cases, each
node in the call tree or graph has metrics per-MPI process and/or
thread and this data needs to be stored and indexed hierarchically.
To index the rows of the data frame in such cases, a MultiIndex
consisting of the structured index for the node and MPI rank or
thread ID is used. In the most general case, a row in the data frame
is indexed by a process and/or thread ID (and any other needed
identi�ers in even higher dimensional cases).

3.3 Immutable Graph Semantics
Astute readers may have noted that we are adding direct references
to graph nodes into the DataFrame. The risk this poses in our API
is that client code can extract a subset of a DataFrame and hand
it o� to other client code, which then modi�es the graph index
nodes directly and corrupts all DataFrames that use the same nodes.
One key aspect of Hatchet is that its graph nodes use immutable
semantics. The GraphFrame API is responsible for ensuring that
operations between any two GraphFrames use immutable graph
node references, and that any operations that would modify a graph
node in place instead create an entirely new graph index for the new
GraphFrame to work with. So, we implement immutable semantics
using copy-on-write to simplify the management of the graph and
DataFrame together.

One further consequence of our index model is that to use two
DataFrames together, we require that their graphs be uni�ed. That
is, that they share the same index. This should be obvious when con-
sidering that the nodes are compared by their key values, and two
nodes can only be considered identical within an index if they have
identical keys, which means that theymust be in the same graph for
comparison to make sense. We accomplish this by traversing the
graphs and computing their union according to their connectivity
and Frame values (described further in the API section). Incidentally,
this type of restriction is not unusual in pandas, where comparing
two data frames frequently requires reconciling their indexes, as
well. We abstract the details of these graph operations in Hatchet
through the GraphFrame API, which determines when and how
GraphFrames should be uni�ed.

3.4 Reading a CCT Dataset
With all of these components, the structured index Graph models
the edge relationships between nodes in the structured data, and
a DataFrame stores the numerical (performance metrics such as
time, performance counter data, etc.) and categorical data (e.g., load
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Output

• Flat profile: Listing of all functions with counts and execution 
times

• Call graph profile

• Calling context tree
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The static call graph can be constructed from 
the source text of the program. However, discover- 
ing the static call graph from the source text would 
require two moderately difficult steps: finding the 
source text for the program (which may not be 
available), and scanning and parsing that text, 
which may be in any one of several languages. 

In our programming system, the static calling 
information is also contained in the executable ver- 
sion of the program, which we already have avail- 
able, and which is in language-independent form. 
One can examine the instructions in the object pro- 
gram, looking for calls to routines, and note which 
routines can be called. This technique allows us to 
add arcs to those already in the dynamic call graph. 
If a statically discovered arc already exists in the 
dynamic call graph, no action is required. Statically 
discovered arcs that do not exist in the dynamic 
call graph are added to the graph with a traversal 
count of zero. Thus they are never responsible for 
any time propagation. However, they may affect 
the structure of the graph. Since they may com- 
plete strongly connected components, the static 
call graph construction is done before topological 
ordering. 

5. Data Presentation 
The data is presented to the user in two 

different formats. The first presentation simply 
lists the routines without regard to the amount of 
time their descendants use. The second presenta- 
tion incorporates the call graph of the program. 

5.1. The Flat Profile 
The fiat profi le  cons i s t s  of a l is t  of all  t h e  rou-  

t ines  t h a t  a r e  ca l led  dur ing  execu t ion  of t he  p ro -  
g r a m ,  wi th  t he  c o u n t  of t he  n u m b e r  of t i m e s  t h e y  
a r e  ca l led  and the  n u m b e r  of s e c o n d s  of e x e c u t i o n  
t i m e  for  which  t h e y  a re  t h e m s e l v e s  a c c o u n t a b l e .  
The r o u t i n e s  a re  l i s t ed  in d e c r e a s i n g  o r d e r  of execu-  
t ion  t ime .  A l is t  of the  r o u t i n e s  t h a t  a r e  n e v e r  
ca l l ed  dur ing  e x e c u t i o n  of t he  p r o g r a m  is also ava i l -  
ab le  to  ver i fy  t h a t  no th ing  i m p o r t a n t  is o m i t t e d  by  
th is  execu t ion .  The fiat  prof i le  g ives  a quick over-  
view of the  r o u t i n e s  t h a t  a r e  used ,  and shows the  
r o u t i n e s  t h a t  a re  t h e m s e l v e s  r e s p o n s i b l e  for  l a rge  
f r ac t i ons  of the  e x e c u t i o n  t ime .  In p r a c t i c e ,  th i s  
profi le  usua l ly  shows t h a t  no single func t ion  is 
overwhe lming ly  r e s p o n s i b l e  for t he  t o t a l  t i m e  'of t h e  
p r o g r a m .  Notice t h a t  for  th is  profi le ,  t he  ind iv idua l  
t i m e s  sum to t he  t o t a l  execu t ion  t ime .  

5.'b-. The Call Graph Profile 
Ideal ly ,  we would l ike to  p r i n t  t h e  cal l  g r a p h  of  

the p r o g r a m ,  b u t  we a re  l imi t ed  by  the  two- 
d i m e n s i o n a l  n a t u r e  of our  o u t p u t  dev ices .  We can -  
no t  a s s u m e  t h a t  a call  g r a p h  is p lanar ,  and  even if i t  
is, t h a t  we can  p r i n t  a p l a n a r  vers ion-of  it .  I n s t ead ,  
we choose  to l i s t  e a c h  rou t ine ,  t o g e t h e r  With infor-  
'ma t i on  a b o u t  t h e  r o u t i n e s  t h a t  a r e  i t s  d i r e c t  
p a r e n t s  and  ch i ld ren .  This l is t ing p r e s e n t s  a win- 
dow into  the  ca l l  g raph .  Based  o n  Our e x p e r i e n c e ,  
b o t h  p a r e n t  i n f o r m a t i o n  and ch i ld  i n i o r m a t i 0 n  is 
i m p o r t a n t ,  and  should  be avai lab le  wi thou t  

s ea r ch ing  t h r o u g h  the  ou tpu t .  
The m a j o r  e n t r i e s  of the  cal l  g r a p h  profi le  a re  

t he  e n t r i e s  f rom the  fiat  profi le ,  a u g m e n t e d  by  the 
t ime  p r o p a g a t e d  to  e a c h  rou t i ne  f rom i ts  d e s c e n -  
dan t s .  This prof i le  is s o r t e d  by  the  s u m  of t h e  t ime  
for t h e  rou t i ne  i tself  p lus  the  t i m e  i n h e r i t e d  f rom 
i ts  d e s c e n d a n t s .  The prof i le  shows which of the  
h ighe r  level  r o u t i n e s  spend  la rge  p o r t i o n s  of the  
t o t a l  execu t ion  t i m e  in the  r o u t i n e s  t h a t  t h e y  call .  
F o r  each  rou t ine ,  we show the  a m o u n t  of t i m e  
p a s s e d  by e a c h  chi ld  to  t h e  rou t ine ,  which i nc ludes  
t i m e  for the  chi ld  i t se l f  and  for  t he  d e s c e n d a n t s  of 
t h e  chi ld  (and t hus  t he  d e s c e n d a n t s  of t h e  rou t ine ) .  
We also show t h e  p e r c e n t a g e  t h e s e  t i m e s  r e p r e s e n t  
of t he  t o t a l  t ime  a c c o u n t e d  to t he  chi ld.  S imi la r ly ,  
t he  p a r e n t s  of e ach  r o u t i n e  a re  l i s ted ,  along with 
t ime ,  and  p e r c e n t a g e  of t o t a l  r o u t i n e  t i m e ,  p ro -  
p a g a t e d  to  e a c h  one.  

Cycles a re  h a n d l e d  as  s ingle en t i t i e s .  The cycle  
as a whole is shown as t h o u g h  i t  were  a s ingle rou-  
t ine ,  e x c e p t  t h a t  m e m b e r s  of the  cyc le  a r e  l i s t ed  in 
p l ace  of t he  ch i ld ren .  Al though the  n u m b e r  of ca l ls  
of e a c h  m e m b e r  f rom within the  c y c l e  a re  shown, 
t h e y  do no t  a f fec t  t i m e  p r o p a g a t i o n .  When a chi ld  is 
a m e m b e r  of a cyc le ,  t he  t ime  shown is the  
a p p r o p r i a t e  f r a c t i o n  of the  t ime  for t he  whole cycle .  
Se l f - r ecurs ive  r o u t i n e s  have  t h e i r  ca l ls  b r o k e n  down 
into  cal ls  f rom the  ou t s ide  and s e l f - r ecu r s ive  cal ls .  
Only the  ou t s ide  ca l l s  a f fec t  t he  p r o p a g a t i o n  of 
t ime .  

The following e x a m p l e  is a t y p i c a l  f r a g m e n t  of a 
cal l  g raph .  

The en ' t ry in the  cal l  g r a p h  prof i le  l i s t ing for  th is  
e x a m p l e  is shown in F igure  4. 

The e n t r y  is for r ou t i ne  EXAMPLE, which has  the  
Cal ler  r o u t i n e s  as  i t s  p a r e n t s ,  and  the  Sub r o u t i n e s  
as i ts  ch i ld ren .  The r e a d e r  should  k e e p  in m i n d  
t h a t  all i n f o r m a t i o n  is g iven  w i t h  r e s p e c t  to EXAM- 
PLE. The index  in t he  f i rs t  co lumn  shows t h a t  EXAM- 
PLE is t he  s econd  e n t r y  in t he  profi le  l is t ing.  The 
EXAMPLE r o u t i n e  is Called t e n  t imes ,  four  t i m e s  by  
CALLER1, and  six t i m e s  b y  CALLER2. Consequen t ly  
4 0 ~  of EXAmPLE's t i m e  is p r o p a g a t e d  to  CALLER1, a n d  
60~ of EXAMPLE'S t ime  is p r d p a g a t e d  %o CALLER2. 
The self 'and d e s c e n d a n t  f ie lds  o'f t he  p a r e n t s  show 
the  a m o u n t  o'f self  and  d e s c e n d a n t  t i m e  EXAMPLE 
p r o p a g a t e s  to  ' t hem '(but no t  t h e  ' t ime u s e d  by the  
p a r e n t s  d i rec t ly ) .  Note t h a t  EXAMPLE cal ls  i~tself 
r ecu i ' s ive ly  four t imes .  The rou t i ne  EXAMPLE cal ls  
r ou t i n e  SUB1 twen ty  t imes ,  SUB2 once,  and  n e v e r  
cal ls  SUB3. S ince  sUB2 ~s ca l led  a ' total  of five t imes ,  
20~ of i ts  self  and  d e s c e n d a n t  ' t ime is p r o p a g a t e d  to  
EXAMPLE's d e s c e n d a n t  t ime  field. Because  SUB1 is a 
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Figure 7: Visualization outputs supported in Hatchet in-
clude terminal output (left), DOT (right), and �ame graph
(bottom).

Hatchet when using increasingly large datasets. We ran LULESH
to generate Caliper pro�les on 1 to 512 cores. LULESH requires a
cubed number of processes. Hatchet was run on a relatively slow
macOS laptop (1.8 GHz Intel Core i5). In the plot, �le read is the
time to read the input dataset into memory and convert it into the
Hatchet data representation (graph and DataFrame). drop index
represents the drop_index_levels operation, which we use to
aggregate the per process information. If we apply a �lter after
dropping the second index (MPI rank), the �lter operation takes
a constant amount of time (⇠ 0.2 seconds). Hence, in the plot, the
time shown for �lter is measured for the case when �lter is done
without aggregating the per-process information. We see that the
time increases linearly with the increase in the size of the dataset
(both axes have a logarithmic scale).

Hatchet only adds a modest amount of code on top of the pandas
library. Currently, the Hatchet code is nearly 2,400 lines of Python
(obtained using sloccount [26]). We expect it to grow modestly as
we add more readers and operations to it.

6 CASE STUDIES
In this section, we present several case studies demonstrating how
common performance analyses can be executed in an automated
manner using the Hatchet API and a few lines of Python code. The
�rst set of case studies analyze single execution pro�les for two
scienti�c proxy applications, while the second set of case studies
compare pro�les from multiple executions.

6.1 Experimental Setup
We performed our single- and multi-node experiments on the
Quartz supercomputer at Lawrence Livermore National Laboratory
(LLNL). Each node of Quartz contains two Intel Broadwell proces-
sors with 36 cores per node. Our case studies used two scienti�c

Figure 8: Performance overheads for di�erent operations in
Hatchet shown on a logarithmic scale.�le read is the time to
convert the data into the Hatchet representation, drop index
and �lter are the time to complete the drop_index_levels

and filter operations, respectively.

proxy applications. LULESH [1] is a Lagrangian shock hydrodynam-
ics mini-application that solves a Sedov blast problem. For these
case studies, we instrumented the LULESH code with Caliper anno-
tations to collect performancemetrics in Caliper’s split JSON format.
The second proxy application we used was Kripke [2, 13], which
simulates neutron transport. We used HPCToolkit to generate the
execution pro�les of Kripke.

6.2 Analyzing a Single Execution Pro�le
Analyzing the pro�ling output from a single application execution
is a fairly common performance analysis task. Typically, end users
or performance researchers pro�le their code on a platform using
a number of processes where they expect or have witnessed a
performance degradation, and then analyze the output of such
pro�ling. One of the most common tasks is to pin-point the regions
of code or functions where the code spends most of its time. This
is traditionally called a �at pro�le because the calling context is
lost and we just get a �at view of functions or statements or code
regions.

Flat pro�les: Flat pro�les can be easily generated in Hatchet using
the groupby functionality in pandas. The �at pro�le can be based
on any categorical column (e.g., function name, load module, �le
name). Similar to the sort feature in perf, the �at pro�le groups
the nodes by the speci�ed categorical column. Figure 9 shows the
code to generate a �at pro�le by applying a groupby operation on
the DataFrame object. The data read into Hatchet was generated
by pro�ling 20 time steps of Kripke using HPCToolkit. We can
transform the CCT generated by HPCToolkit into a �at pro�le by
specifying the column on which to apply the groupby operation
and the function to use for aggregation. In this case, we use sum to
get the total time spent in each function.

Load imbalance: When program developers run their code on a
large number of MPI processes, load imbalance across processes
is often a scaling bottleneck. Hatchet makes it extremely easy to
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