
Day 3: Writing MPI programs
Abhinav Bhatele, Department of Computer Science

HPC Programming Bootcamp

Abhinav Bhatele, HPC Programming Bootcamp

OpenMP: reduction

2

double area, pi, x;
int i, n;
...
area = 0.0;

for (i = 0; i < n; i++) {
 x = (i+0.5)/n;
 area += 4.0/(1.0 + x*x);
}

pi = area / n;

Abhinav Bhatele, HPC Programming Bootcamp

OpenMP: reduction

2

double area, pi, x;
int i, n;
...
area = 0.0;

for (i = 0; i < n; i++) {
 x = (i+0.5)/n;
 area += 4.0/(1.0 + x*x);
}

pi = area / n;

#pragma omp parallel for private(x)

Abhinav Bhatele, HPC Programming Bootcamp

OpenMP: reduction

2

double area, pi, x;
int i, n;
...
area = 0.0;

for (i = 0; i < n; i++) {
 x = (i+0.5)/n;
 area += 4.0/(1.0 + x*x);
}

pi = area / n;

#pragma omp parallel for private(x) reduction(+:area)

Abhinav Bhatele, HPC Programming Bootcamp

schedule clause

• We can use the schedule clause too specify the allocation of iterations to threads

• Static scheduling

• Dynamic scheduling

• Guided scheduling

• Auto

• Runtime: based on the OMP_SCHEDULE flag

3

Writing MPI programs

Abhinav Bhatele, HPC Programming Bootcamp

Programming models

• Shared memory model: All threads/processes have access to all of the memory

• Pthreads, OpenMP

• Distributed memory model: Each process has access to their own local memory

• Also referred to as message passing

• MPI, Charm++

• Hybrid models: Use both shared and distributed memory models together

• MPI+OpenMP, Charm++ (SMP mode)

5

Abhinav Bhatele, HPC Programming Bootcamp

Distributed memory / message passing

• Each process can use its local memory for computation

• When it needs data from remote processes, it has to send messages

• PVM (Parallel Virtual Machine) was developed in 1989-1993

• MPI forum was formed in 1992 to standardize message programming models and
MPI 1.0 was released around 1994

• v2.0 - 1997

• v3.0 - 2012

6

Abhinav Bhatele, HPC Programming Bootcamp

Message passing

• Each process runs in its own address space

• Access to only their memory

• Use special routines to exchange data

7

Process 0

Process 1

Time

Abhinav Bhatele, HPC Programming Bootcamp

Message Passing Interface (MPI)

• It is an interface standard — defines the operations / routines needed for message
passing

• Implemented by vendors and academics for different platforms

• Meant to be “portable”: ability to run the same code on different platforms without modifications

• Two popular implementations are MPICH and MVAPICH

8

Abhinav Bhatele, HPC Programming Bootcamp

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv) {
 int rank, size;
 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("Hello world! I'm %d of %d\n", rank, size);

 MPI_Finalize();
 return 0;
}

Hello World in MPI

9

Abhinav Bhatele, HPC Programming Bootcamp

Compiling and running an MPI program

• Compiling:

• Running:

10

mpicc -o hello hello.c

mpirun -np 2 ./hello

Abhinav Bhatele, HPC Programming Bootcamp

Process creation / destruction

• int MPI_Init(int argc, char **argv)

• Initialize the MPI execution environment

• int MPI_Finalize(void)

• Terminates MPI execution environment

11

Abhinav Bhatele, HPC Programming Bootcamp

Process identification

• int MPI_Comm_size(MPI_Comm comm, int *size)

• Determines the size of the group associated with a communicator

• int MPI_Comm_rank(MPI_Comm comm, int *rank)

• Determines the rank (ID) of the calling process in the communicator

• Communicator — a set of processes

• Default communicator: MPI_COMM_WORLD

12

Abhinav Bhatele, HPC Programming Bootcamp

int MPI_Send(const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

buf: address of send buffer

count: number of elements in send buffer

datatype: datatype of each send buffer element

dest: rank of destination process

tag: message tag

comm: communicator

Send a message

13

Abhinav Bhatele, HPC Programming Bootcamp

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status)

buf: address of receive buffer

status: status object

count: maximum number of elements in receive buffer

datatype: datatype of each receive buffer element

source: rank of source process

tag: message tag

comm: communicator

Receive a message

14

Abhinav Bhatele, HPC Programming Bootcamp

int main(int argc, char *argv) {
 ...
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 int data;
 if (rank == 0) {
 data = 7;
 MPI_Send(&data, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 } else if (rank == 1) {
 MPI_Recv(&data, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
 printf("Process 1 received data %d from process 0\n", data);
 }

 ...
}

Simple send/receive in MPI

15

Abhinav Bhatele, HPC Programming Bootcamp

Collective operations
• int MPI_Barrier(MPI_Comm comm)

• Blocks until all processes in the communicator have reached this routine

• int MPI_Bcast(void *buffer, int count,
MPI_Datatype datatype, int root, MPI_Comm
comm)

• Send data from root to all processes

• int MPI_Reduce(const void *sendbuf, void
*recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

• Reduce data from all processes to the root

16

4 4 4 4

4

2 4 3 1

10

Abhinav Bhatele, HPC Programming Bootcamp

Collective operations

• int MPI_Scatter(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

• Send data from root to all processes

• int MPI_Gather(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

• Gather data from all processes to the root

• MPI_Scan

17

Abhinav Bhatele, HPC Programming Bootcamp

int main(int argc, char *argv[])
{
 ...

 n = 10000;

 h = 1.0 / (double) n;
 sum = 0.0;

 for (i = 1; i <= n; i += 1) {
 x = h * ((double)i - 0.5);
 sum += (4.0 / (1.0 + x * x));
 }
 pi = h * sum;

 ...
}

Calculate the value of

18

π = ∫
1

0

4
1 + x2

Abhinav Bhatele, HPC Programming Bootcamp

int main(int argc, char *argv[])
{
 ...

 n = 10000;
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

 h = 1.0 / (double) n;
 sum = 0.0;

 for (i = myrank + 1; i <= n; i += numranks) {
 x = h * ((double)i - 0.5);
 sum += (4.0 / (1.0 + x * x));
 }
 pi = h * sum;

 MPI_Reduce(&pi, &globalpi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

 ...
}

Calculate the value of

19

π = ∫
1

0

4
1 + x2

Abhinav Bhatele, HPC Programming Bootcamp

MPI communicators

• Communicator is a group or set of processes numbered 0, … , n-1

• Every program starts with MPI_COMM_WORLD

• Several MPI routines to create sub-communicators

• MPI_Comm_split

• MPI_Cart_create

• MPI_Group_incl

20

Abhinav Bhatele, HPC Programming Bootcamp

Non-blocking point-to-point calls

• MPI_Isend and MPI_Irecv

• Two parts:

• post the operation

• Wait for results: need to call MPI_Wait or MPI_Test

• Can help with overlapping computation with communication

21

Abhinav Bhatele, HPC Programming Bootcamp

Other MPI Calls

• MPI_Wtime

• MPI profiling interface: PMPI_*

22

Performance Tools

Abhinav Bhatele, HPC Programming Bootcamp

Performance analysis

• Parallel performance of a program might not be what we expect

• How do we find performance bottlenecks?

• Two parts to performance analysis: measurement and analysis/visualization

• Simplest tool: timers in the code and printf

24

Abhinav Bhatele, HPC Programming Bootcamp

Performance Tools

• Tracing tools

• Capture entire execution trace

• Vampir, Score-P

• Profiling tools

• Typically use statistical sampling

• Gprof

• Many tools can do both

• TAU, HPCToolkit, Projections

25

Abhinav Bhatele, HPC Programming Bootcamp

Metrics recorded

• Counts of function invocations

• Time spent in code

• Hardware counters

26

Abhinav Bhatele, HPC Programming Bootcamp

Calling contexts, trees, and graphs

• Calling context or call path: Sequence of function
invocations leading to the current sample

• Calling context tree: dynamic prefix tree of all call paths in
an execution

• Call graph: keep caller-callee relationships as arcs

27

SC ’19, November 17–22, 2019, Denver, CO, USA Bhatele et al.

the names of �elds as much as possible over di�erent sources to
enable comparison of data across measurement tools, but this is
not a requirement.

3.1.2 Nodes. Frames are associated with nodes in the Hatchet
graph, and node objects de�ne connectivity and structure of the
Hatchet model. Each node knows its children and its ancestors in
the graph, and each node has a unique key. The key is not meant to
be accessed by Hatchet users. Rather, like Frames, Hatchet nodes
expose their own comparison operations (==, >, <, etc.), which
opaquely operate on this key. This means that we can insert Node
objects directly into a pandas DataFrame column and make it an
index. By default, we use the Python id() function for the node
key. This is equivalent, roughly, to C’s & operator, in that it returns
an integer representing the address of the Python object in memory.
We require only that the node key be unique for each node. We
can optionally use keys that provide certain useful orderings (like
pre-order, post-order, etc.), if we want to pay the cost of a graph
traversal (or sort) to generate more structured keys. We default to
only guaranteeing uniqueness and not order in our keys.

3.2 GraphFrame
The central data structure in the Hatchet library is a GraphFrame,
which combines the structured indexGraphwith a pandasDataFrame.
Figure 3 shows the two objects in a GraphFrame – a graph object
(the index), and a DataFrame object storing the metrics associated
with each node.

main

physics solvers

mpi

psm2

hypre mpi

psm2

Figure 3: InHatchet, theGraphFrame consists of a graph and
a DataFrame object.

Because of the way we have architected the structured index
Graph, we can insert Node objects directly into the pandasDataFrame.
The nodes are sorted using their basic comparison operators, which
operate on their key attribute. Thus, the �rst column in theDataFrame
(the node) is the index column. As a convenience, we may also add
columns (like name) based on attributes from each node’s Frame.
For example, in the �gure, we have added the name and nid columns
from the Frame subclass for HPCToolkit. This allows us to use reg-
ular pandas operations (selection, �ltering) on these values directly.
As we will see later, the node column itself also allows various
graph-semantic functions to be used, as well. Finally, in addition to
the identifying information for each node, we also add columns for
each associated performance metric (inclusive and exclusive time
in the �gure).

Graphs vs. Trees: Hatchet stores the structure (typically a pre�x
tree generated from call paths) in the input data as a directed graph
(instead of a tree) for two reasons. First, subsequent operations on a
tree can create edges or merge nodes, turning the tree into a graph.
Additionally, output from tools such as callgrind is already in the
form of a DAG. Hatchet’s directed graph could be connected or
have multiple disconnected components. Each entity in the graph,
such as a callsite, procedure frame, or function, is stored as a node
and the caller-callee relationships are stored as directed edges. Each
node in the graph can have one or multiple parents and children.

Bene�ts of DataFrames: We use a pandas DataFrame to store
all the numerical and categorical data associated with each node.
Pro�le data can be inherently high-dimensional when metrics are
gathered per-MPI process and/or per-thread. In such cases, each
node in the call tree or graph has metrics per-MPI process and/or
thread and this data needs to be stored and indexed hierarchically.
To index the rows of the data frame in such cases, a MultiIndex
consisting of the structured index for the node and MPI rank or
thread ID is used. In the most general case, a row in the data frame
is indexed by a process and/or thread ID (and any other needed
identi�ers in even higher dimensional cases).

3.3 Immutable Graph Semantics
Astute readers may have noted that we are adding direct references
to graph nodes into the DataFrame. The risk this poses in our API
is that client code can extract a subset of a DataFrame and hand
it o� to other client code, which then modi�es the graph index
nodes directly and corrupts all DataFrames that use the same nodes.
One key aspect of Hatchet is that its graph nodes use immutable
semantics. The GraphFrame API is responsible for ensuring that
operations between any two GraphFrames use immutable graph
node references, and that any operations that would modify a graph
node in place instead create an entirely new graph index for the new
GraphFrame to work with. So, we implement immutable semantics
using copy-on-write to simplify the management of the graph and
DataFrame together.

One further consequence of our index model is that to use two
DataFrames together, we require that their graphs be uni�ed. That
is, that they share the same index. This should be obvious when con-
sidering that the nodes are compared by their key values, and two
nodes can only be considered identical within an index if they have
identical keys, which means that theymust be in the same graph for
comparison to make sense. We accomplish this by traversing the
graphs and computing their union according to their connectivity
and Frame values (described further in the API section). Incidentally,
this type of restriction is not unusual in pandas, where comparing
two data frames frequently requires reconciling their indexes, as
well. We abstract the details of these graph operations in Hatchet
through the GraphFrame API, which determines when and how
GraphFrames should be uni�ed.

3.4 Reading a CCT Dataset
With all of these components, the structured index Graph models
the edge relationships between nodes in the structured data, and
a DataFrame stores the numerical (performance metrics such as
time, performance counter data, etc.) and categorical data (e.g., load

Abhinav Bhatele, HPC Programming Bootcamp

Output

• Flat profile: Listing of all functions with counts and execution
times

• Call graph profile

• Calling context tree

28

The static call graph can be constructed from
the source text of the program. However, discover-
ing the static call graph from the source text would
require two moderately difficult steps: finding the
source text for the program (which may not be
available), and scanning and parsing that text,
which may be in any one of several languages.

In our programming system, the static calling
information is also contained in the executable ver-
sion of the program, which we already have avail-
able, and which is in language-independent form.
One can examine the instructions in the object pro-
gram, looking for calls to routines, and note which
routines can be called. This technique allows us to
add arcs to those already in the dynamic call graph.
If a statically discovered arc already exists in the
dynamic call graph, no action is required. Statically
discovered arcs that do not exist in the dynamic
call graph are added to the graph with a traversal
count of zero. Thus they are never responsible for
any time propagation. However, they may affect
the structure of the graph. Since they may com-
plete strongly connected components, the static
call graph construction is done before topological
ordering.

5. Data Presentation
The data is presented to the user in two

different formats. The first presentation simply
lists the routines without regard to the amount of
time their descendants use. The second presenta-
tion incorporates the call graph of the program.

5.1. The Flat Profile
The fiat profi le cons i s t s of a l is t of all t h e rou-

t ines t h a t a r e ca l led dur ing execu t ion of t he p ro -
g r a m , wi th t he c o u n t of t he n u m b e r of t i m e s t h e y
a r e ca l led and the n u m b e r of s e c o n d s of e x e c u t i o n
t i m e for which t h e y a re t h e m s e l v e s a c c o u n t a b l e .
The r o u t i n e s a re l i s t ed in d e c r e a s i n g o r d e r of execu-
t ion t ime . A l is t of the r o u t i n e s t h a t a r e n e v e r
ca l l ed dur ing e x e c u t i o n of t he p r o g r a m is also ava i l -
ab le to ver i fy t h a t no th ing i m p o r t a n t is o m i t t e d by
th is execu t ion . The fiat prof i le g ives a quick over-
view of the r o u t i n e s t h a t a r e used , and shows the
r o u t i n e s t h a t a re t h e m s e l v e s r e s p o n s i b l e for l a rge
f r ac t i ons of the e x e c u t i o n t ime . In p r a c t i c e , th i s
profi le usua l ly shows t h a t no single func t ion is
overwhe lming ly r e s p o n s i b l e for t he t o t a l t i m e 'of t h e
p r o g r a m . Notice t h a t for th is profi le , t he ind iv idua l
t i m e s sum to t he t o t a l execu t ion t ime .

5.'b-. The Call Graph Profile
Ideal ly , we would l ike to p r i n t t h e cal l g r a p h of

the p r o g r a m , b u t we a re l imi t ed by the two-
d i m e n s i o n a l n a t u r e of our o u t p u t dev ices . We can -
no t a s s u m e t h a t a call g r a p h is p lanar , and even if i t
is, t h a t we can p r i n t a p l a n a r vers ion-of it . I n s t ead ,
we choose to l i s t e a c h rou t ine , t o g e t h e r With infor-
'ma t i on a b o u t t h e r o u t i n e s t h a t a r e i t s d i r e c t
p a r e n t s and ch i ld ren . This l is t ing p r e s e n t s a win-
dow into the ca l l g raph . Based o n Our e x p e r i e n c e ,
b o t h p a r e n t i n f o r m a t i o n and ch i ld i n i o r m a t i 0 n is
i m p o r t a n t , and should be avai lab le wi thou t

s ea r ch ing t h r o u g h the ou tpu t .
The m a j o r e n t r i e s of the cal l g r a p h profi le a re

t he e n t r i e s f rom the fiat profi le , a u g m e n t e d by the
t ime p r o p a g a t e d to e a c h rou t i ne f rom i ts d e s c e n -
dan t s . This prof i le is s o r t e d by the s u m of t h e t ime
for t h e rou t i ne i tself p lus the t i m e i n h e r i t e d f rom
i ts d e s c e n d a n t s . The prof i le shows which of the
h ighe r level r o u t i n e s spend la rge p o r t i o n s of the
t o t a l execu t ion t i m e in the r o u t i n e s t h a t t h e y call .
F o r each rou t ine , we show the a m o u n t of t i m e
p a s s e d by e a c h chi ld to t h e rou t ine , which i nc ludes
t i m e for the chi ld i t se l f and for t he d e s c e n d a n t s of
t h e chi ld (and t hus t he d e s c e n d a n t s of t h e rou t ine) .
We also show t h e p e r c e n t a g e t h e s e t i m e s r e p r e s e n t
of t he t o t a l t ime a c c o u n t e d to t he chi ld. S imi la r ly ,
t he p a r e n t s of e ach r o u t i n e a re l i s ted , along with
t ime , and p e r c e n t a g e of t o t a l r o u t i n e t i m e , p ro -
p a g a t e d to e a c h one.

Cycles a re h a n d l e d as s ingle en t i t i e s . The cycle
as a whole is shown as t h o u g h i t were a s ingle rou-
t ine , e x c e p t t h a t m e m b e r s of the cyc le a r e l i s t ed in
p l ace of t he ch i ld ren . Al though the n u m b e r of ca l ls
of e a c h m e m b e r f rom within the c y c l e a re shown,
t h e y do no t a f fec t t i m e p r o p a g a t i o n . When a chi ld is
a m e m b e r of a cyc le , t he t ime shown is the
a p p r o p r i a t e f r a c t i o n of the t ime for t he whole cycle .
Se l f - r ecurs ive r o u t i n e s have t h e i r ca l ls b r o k e n down
into cal ls f rom the ou t s ide and s e l f - r ecu r s ive cal ls .
Only the ou t s ide ca l l s a f fec t t he p r o p a g a t i o n of
t ime .

The following e x a m p l e is a t y p i c a l f r a g m e n t of a
cal l g raph .

The en ' t ry in the cal l g r a p h prof i le l i s t ing for th is
e x a m p l e is shown in F igure 4.

The e n t r y is for r ou t i ne EXAMPLE, which has the
Cal ler r o u t i n e s as i t s p a r e n t s , and the Sub r o u t i n e s
as i ts ch i ld ren . The r e a d e r should k e e p in m i n d
t h a t all i n f o r m a t i o n is g iven w i t h r e s p e c t to EXAM-
PLE. The index in t he f i rs t co lumn shows t h a t EXAM-
PLE is t he s econd e n t r y in t he profi le l is t ing. The
EXAMPLE r o u t i n e is Called t e n t imes , four t i m e s by
CALLER1, and six t i m e s b y CALLER2. Consequen t ly
4 0 ~ of EXAmPLE's t i m e is p r o p a g a t e d to CALLER1, a n d
60~ of EXAMPLE'S t ime is p r d p a g a t e d %o CALLER2.
The self 'and d e s c e n d a n t f ie lds o'f t he p a r e n t s show
the a m o u n t o'f self and d e s c e n d a n t t i m e EXAMPLE
p r o p a g a t e s to ' t hem '(but no t t h e ' t ime u s e d by the
p a r e n t s d i rec t ly) . Note t h a t EXAMPLE cal ls i~tself
r ecu i ' s ive ly four t imes . The rou t i ne EXAMPLE cal ls
r ou t i n e SUB1 twen ty t imes , SUB2 once, and n e v e r
cal ls SUB3. S ince sUB2 ~s ca l led a ' total of five t imes ,
20~ of i ts self and d e s c e n d a n t ' t ime is p r o p a g a t e d to
EXAMPLE's d e s c e n d a n t t ime field. Because SUB1 is a

124

Hatchet: Pruning the Overgrowth in Parallel Profiles SC ’19, November 17–22, 2019, Denver, CO, USA

foo

bar qux waldo

baz grault quux

corge

bar grault garply

baz grault

fred garply

plugh xyzzy

thud

baz garply

FlameGraph

quux
corge

foo
bar

fred
xyzzy
thud

qux

bar

waldo

Figure 7: Visualization outputs supported in Hatchet in-
clude terminal output (left), DOT (right), and �ame graph
(bottom).

Hatchet when using increasingly large datasets. We ran LULESH
to generate Caliper pro�les on 1 to 512 cores. LULESH requires a
cubed number of processes. Hatchet was run on a relatively slow
macOS laptop (1.8 GHz Intel Core i5). In the plot, �le read is the
time to read the input dataset into memory and convert it into the
Hatchet data representation (graph and DataFrame). drop index
represents the drop_index_levels operation, which we use to
aggregate the per process information. If we apply a �lter after
dropping the second index (MPI rank), the �lter operation takes
a constant amount of time (⇠ 0.2 seconds). Hence, in the plot, the
time shown for �lter is measured for the case when �lter is done
without aggregating the per-process information. We see that the
time increases linearly with the increase in the size of the dataset
(both axes have a logarithmic scale).

Hatchet only adds a modest amount of code on top of the pandas
library. Currently, the Hatchet code is nearly 2,400 lines of Python
(obtained using sloccount [26]). We expect it to grow modestly as
we add more readers and operations to it.

6 CASE STUDIES
In this section, we present several case studies demonstrating how
common performance analyses can be executed in an automated
manner using the Hatchet API and a few lines of Python code. The
�rst set of case studies analyze single execution pro�les for two
scienti�c proxy applications, while the second set of case studies
compare pro�les from multiple executions.

6.1 Experimental Setup
We performed our single- and multi-node experiments on the
Quartz supercomputer at Lawrence Livermore National Laboratory
(LLNL). Each node of Quartz contains two Intel Broadwell proces-
sors with 36 cores per node. Our case studies used two scienti�c

Figure 8: Performance overheads for di�erent operations in
Hatchet shown on a logarithmic scale.�le read is the time to
convert the data into the Hatchet representation, drop index
and �lter are the time to complete the drop_index_levels

and filter operations, respectively.

proxy applications. LULESH [1] is a Lagrangian shock hydrodynam-
ics mini-application that solves a Sedov blast problem. For these
case studies, we instrumented the LULESH code with Caliper anno-
tations to collect performancemetrics in Caliper’s split JSON format.
The second proxy application we used was Kripke [2, 13], which
simulates neutron transport. We used HPCToolkit to generate the
execution pro�les of Kripke.

6.2 Analyzing a Single Execution Pro�le
Analyzing the pro�ling output from a single application execution
is a fairly common performance analysis task. Typically, end users
or performance researchers pro�le their code on a platform using
a number of processes where they expect or have witnessed a
performance degradation, and then analyze the output of such
pro�ling. One of the most common tasks is to pin-point the regions
of code or functions where the code spends most of its time. This
is traditionally called a �at pro�le because the calling context is
lost and we just get a �at view of functions or statements or code
regions.

Flat pro�les: Flat pro�les can be easily generated in Hatchet using
the groupby functionality in pandas. The �at pro�le can be based
on any categorical column (e.g., function name, load module, �le
name). Similar to the sort feature in perf, the �at pro�le groups
the nodes by the speci�ed categorical column. Figure 9 shows the
code to generate a �at pro�le by applying a groupby operation on
the DataFrame object. The data read into Hatchet was generated
by pro�ling 20 time steps of Kripke using HPCToolkit. We can
transform the CCT generated by HPCToolkit into a �at pro�le by
specifying the column on which to apply the groupby operation
and the function to use for aggregation. In this case, we use sum to
get the total time spent in each function.

Load imbalance: When program developers run their code on a
large number of MPI processes, load imbalance across processes
is often a scaling bottleneck. Hatchet makes it extremely easy to

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

Questions?

